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Abstract: Calculations of the impact of friction and wear on energy consumption, economic expenditure, and
CO, emissions are presented on a global scale. This impact study covers the four main energy consuming sectors:
transportation, manufacturing, power generation, and residential. Previously published four case studies on
passenger cars, trucks and buses, paper machines and the mining industry were included in our detailed
calculations as reference data in our current analyses. The following can be concluded:

—In total, ~23% (119 EJ) of the world’s total energy consumption originates from tribological contacts. Of that
20% (103 EJ) is used to overcome friction and 3% (16 EJ) is used to remanufacture worn parts and spare equipment
due to wear and wear-related failures.

— By taking advantage of the new surface, materials, and lubrication technologies for friction reduction and
wear protection in vehicles, machinery and other equipment worldwide, energy losses due to friction and wear
could potentially be reduced by 40% in the long term (15 years)and by 18% in the short term (8 years). On global
scale, these savings would amount to 1.4% of the GDP annually and 8.7% of the total energy consumption in
the long term.

— The largest short term energy savings are envisioned in transportation (25%) and in the power generation
(20%) while the potential savings in the manufacturing and residential sectors are estimated to be ~10%. In the
longer terms, the savings would be 55%, 40%, 25%, and 20%, respectively.

— Implementing advanced tribological technologies can also reduce the CO, emissions globally by as much as
1,460 MtCQO; and result in 450,000 million Euros cost savings in the short term. In the longer term, the reduction
can be 3,140 MtCO; and the cost savings 970,000 million Euros.

Fifty years ago, wear and wear-related failures were a major concern for UK industry and their mitigation
in ten years by the

was considered to be the major contributor to potential economic savings by as much as 959

new tribol al soluti
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Hard facings
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Ocken (1985)

Ocken, Howard. "Reducing the cobalt inventory in light water reactors." Nuclear 4
technology 68.1 (1985): 18-28.
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Office for Nuclear Regulation Report ONR-GDA-AR-11-025
Revision 0

An agency of HSE

e Choosing materials to reduce activated corrosion products (mainly cobalt isotopes).

4.1.1.4.1 Cobalt Reduction

86 In many nuclear power plants (NPPs), activated corrosion products in the primary coolant
increase dose rates through activation of cobalt-59 to cobalt-60 in the Stellite™ content of
hard facings, and activation of nickel-58 to cobalt-58 in inconel 690 alloys and some
stainless steels; cobalt-58 and cobalt-60 typically account for over 80% of equivalent
dose rates associated with the primary coolant.




Office for
Nuclear Regulation

New Reactors Division

Step 4 Assessment of Chemistry for the UK Advanced Boiling Water Reactor

360.

information on the different types and locations of valves. The vast majority ( )is
within the CFDW and MS systems. Hitachi-GE estimates that these valves are the
ireatest source of cobalt release into the coolant of UK ABWR, accounting for around

The other significant usage of Stellite™ in UK ABWR is within valves. Ref. 81 irovides

(again, noting that | consider that this is potentially underestimated due to wear
releases). Hitachi-GE’s approach is that the choice of valve seat hard facing material is
based on multiple factors such as size, nuclear safety significance, location, fluid
property, fluid temperature, valve type and frequency of use. It is widely
acknowledged, including by Hitachi-GE that cobalt-base hard facing materials
generally offer superior performance and reliability compared to nickel- or iron-base
alternatives. This is a reasonable starting point for reviewing if further reductions are
possible.

Assessment Report: ONR-NR-AR-17-020
Revision 0
December 2017
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Why do iron-based hard-facings fail at
elevated temperature?



Technique 1: A very brief
introduction to EBSD

* Electron backscatter diffraction

* Gives rich microstructural maps full of...
* Orientations
* Grains —shapes, size (distributions)

e With a bit more care we can measure...
e Strains
e Dislocations densities

My colleagues: Zeiss Sigma 300 & Bruker e-flash HD
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Gun & magnets
etc.

Inside the scanning electron microscope
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Gun & magnets
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Gun & magnets

Normal imaging
(secondary electron)
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Gun & magnets
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Gun & magnets
etc.

Electron
backscatter
diffraction pattern
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A bit of help with
Gun & magnets chemistry for tricky
etc. phases

Electron
backscatter
diffraction pattern
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Standard EBSD

Orlentatlo
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High-angular resolution EBSD

Single grain

Reference EBSP

Wilkinson, Angus J., Graham Meaden, and David J. Dingley. "High resolution mapping of strains and
rotations using electron backscatter diffraction." Materials Science and Technology 22.11 (2006): 1271-
1278.
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High-angular resolution EBSD

Reference EBSP

Arbitrary EBSP in
same grain

Computer

Britton, T. B., and Angus J. Wilkinson. "High resolution electron backscatter diffraction measurements of elastic
strain variations in the presence of larger lattice rotations." Ultramicroscopy 114 (2012): 82-95.
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High-angular resolution EBSD
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Technique 2: A very quick
introduction to DIC
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Technique 2: A very quick
introduction to DIC

(c) Photograph

23

Scrivens, W. A,, et al. "Development of patterns for digital image correlation measurements at reduced length
scales." Experimental Mechanics 47.1 (2007): 63-77.



ion images

Pre- and post-deformat
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We need features in both images
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We need features in both images
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Compare and calculate shifts
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Convert the shifts into strain

Fii Fy ?
dx = FdX F=\Fy Fyp ?

____________________

u(X+dX) =u(X) +du

____________________

————

L
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Recapitulation

HR-EBSD

HR-DIC

* Ex-situ

* Elastic residual strains - E®

 Geometrically necessary
dislocation density - p.

e Ex-situ
* Total strains - E



Loading conditions

Specimen for small scale three point bend Force and temperature
loading conditions

F= Fmax 7 / \
12 mm - .

time
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Bending hot pieces of metal
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Bending hot pieces of metal

Indenter

Specimen

Thermocouple Lower support pins
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Experimental workflow

Spot
Speckle weld T/C
application

Prepare 9
sample (EDM,
polish)
HR-EBSD Speckle
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Materials

. Austenite Niobium carbide

Ferrite . Chromium carbide (7/3)

Nitronic 60 - Cast and extruded rod Tristelle 5183 — Powder HIPed
l' 2 S ;

30 um
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100 pm

Nitronic 60

A simple microstructure with simple micromechanics?
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Room temperature
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' ”Tension.

*The apparent drift is due
to extremely long (~15 h)
EBSD scnas
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300°C - specimen 1
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300°C - sample 2
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Tristelle 5183

Something a bit more complicated...
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Tristelle 5183 — 300°C
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Pre-deformation Post-deformation
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Focus on large grain regions

Post-deformation
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What are the implications on wear and galling performance?
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Conclusions — Nitronic 60

* Highly heterogeneous deformation owing to large grains

* Cross-hardening and GND accumulation main hardening
mechanisms

* Trends and mechanisms nearly identical at RT and 300°C
 Slight increase in strain with temperature

s Key point: results all show little change from room
temperature



Conclusions — Tristelle 5183

* Complex microstructure - complex micromechanics!
* Fine grains with dispersed ferrite/carbides beneficial
* Large austenite grains deleterious

s Key point: results all show little change from room
temperature®

*RT results not shown here, see Zhao et al. "A comparative assessment of iron and cobalt-based hard-
facing alloy deformation using HR-EBSD and HR-DIC." Acta Materialia 159 (2018): 173-186.



So what’s causing the change?

Change in material properties? Somewhat

Micromechanical matrix deformation? Somewhat

Internal heat generation?* No

Frictional heat generation?* No

Oxide/contaminant layers?

Particle pull-out ?

*Poole, B., Barzdajn, B., Dini, D., Stewart, D., & Dunne, F. P. (2020). The roles of adhesion, internal heat generation and elevated
temperatures in normally loaded, sliding rough surfaces. International Journal of Solids and Structures, 185, 14-28.
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